The fundamental group of sympletic manifolds with Hamiltonian lie group actions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fundamental Group of Symplectic Manifolds with Hamiltonian Lie Group Actions

Let (M,ω) be a connected, compact symplectic manifold equipped with a Hamiltonian G action, where G is a connected compact Lie group. Let φ be the moment map. In [12], we proved the following result for G = S action: as fundamental groups of topological spaces, π1(M) = π1(Mred), where Mred is the symplectic quotient at any value of the moment map φ, and = denotes “isomorphic to”. In this paper,...

متن کامل

The Fundamental Group of Symplectic Manifolds with Hamiltonian Su(2) or So(3) Actions

Let (M,ω) be a connected, compact symplectic manifold equipped with a Hamiltonian SU(2) or SO(3) action. We prove that, as fundamental groups of topological spaces, π1(M) = π1(Mred), where Mred is the symplectic quotient at any value of the moment map φ.

متن کامل

Topological Obstructions to Certain Lie Group Actions on Manifolds

Given a smooth closed S1-manifold M , this article studies the extent to which certain numbers of the form (f∗ (x) · P · C) [M ] are determined by the fixed-point set MS 1 , where f : M → K (π1 (M) , 1) classifies the universal cover of M , x ∈ H∗ (π1 (M) ;Q), P is a polynomial in the Pontrjagin classes of M , and C is in the subalgebra of H∗ (M ;Q) generated by H2 (M ;Q). When MS 1 = ∅, variou...

متن کامل

Diffeomorphisms of Manifolds with Finite Fundamental Group

We show that the group 3i{M) of pseudoisotopy classes of diffeomorphisms of a manifold of dimension > 5 and of finite fundamental group is commensurable to an arithmetic group. As a result n0{DiffM) is a group of finite type. Let M be an «-dimensional closed smooth manifold, where n > 5, and let DiffM be the group of diffeomorphisms of M. The space DiffM (it is a topological space with the C°°-...

متن کامل

Algebraic Realization of Manifolds with Group Actions

Let G be a compact Lie group and M a closed smooth G manifold. With some restrictions on G or on the isotropy groups of the action we show that M is algebraically realized, i. e., there exists a non-singular real algebraic G variety which is equivariantly diffeomorphic to M .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symplectic Geometry

سال: 2006

ISSN: 1527-5256,1540-2347

DOI: 10.4310/jsg.2006.v4.n3.a4